SOLENOID OPERATED DIRECTIONAL CONTROL VALVE # SUBPLATE MOUNTING ISO 4401-03 p max 350 barQ max 100 l/min #### **MOUNTING INTERFACE** # **PERFORMANCES** (obtained with mineral oil with viscosity of 36 cSt at 50°C) | Maximum operating pressure: | | CC | CA | | |---|--|------------------|----------|--| | - P - A - B ports | bar | 35 | 50 | | | - T port | | 210 | 160 | | | Maximum flowrate | l/min | 100 | | | | Pressure drops ∆p-Q | se | e paragraph | 4 | | | Operating limits | se | see paragraph 6 | | | | Electrical features | se | see paragraph 7 | | | | Electrical connections | see | see paragraph 11 | | | | Ambient temperature range | °C -20 / +50 | | | | | Fluid temperature range | °C -20 / +80 | | | | | Fluid viscosity range | cSt 10 ÷ 400 | | | | | Fluid contamination degree | according to ISO 4406:1999
class 20/18/15 | | | | | Recommended viscosity | cSt 25 | | 5 | | | Mass: single solenoid valve double solenoid valve | kg | 1,5
2 | 1,4
2 | | #### **OPERATING PRINCIPLE** - Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-03 standards. - The valve is supplied with 3 or 4 ways design, with 2 or 3 positions with a wide range of spools. - The valve body is made with high strength iron castings provided with wide internal paths in order to minimize - the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see par. 7). - The valve is available with DC or AC solenoids. DC solenoids can also be fed with AC power supply, by using connectors with a built-in rectifier bridge (see paragraphs 6.4 and 7.2). - The DC valve is also available in a soft-shifting version (see par. 14). - The DC valve is also available with zinc-nickel coating that ensures a salt spray resistance up to 600 hours . - It is available a version with UL certified 24V DC coils for Canada and the United States. (see par. 15). - Alternative to the standard manual override there are lever, push, boot and mechanical detent devices. 41 150/217 ED 1/16 DS₃ #### 1 - IDENTIFICATION CODE # 2 - HYDRAULIC FLUIDS Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. (test operated according to UNI EN ISO 9227 standards and test evaluation operated according to UNI EN ISO 10289 standards). Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics. 41 150/217 ED **2/16** # 3 - SPOOL TYPE | 3 - SPOOL TYPE | | | |--|--|--| | Type S*: 2 solenoids - 3 positions with spring centering A B a A B A B P T S1 A B S2 A A B S2 A A B S3 A A B S3 A A B A B A B A B A B A B A B A | Type SA* : 1 solenoid side A 2 positions (central + external) with spring centering a A B a A B P T SA1 P T SA2 P T SA3 P T SA4 P T SA5 P T SA6 P T SA6 P T SA7 P T SA7 P T SA7 P T SA8 P T SA9 | Type SB*: 1 solenoid side B 2 positions (central + external) with spring centering AB OB B SB1 SB2 SB3 SB3 SB3 SB3 SB3 SB3 SB4 SB5 SB5 SB7 SB7 SB7 SB7 SB7 SB7 | | \$4 | Type RSA *: 1 solenoid side A 2 positions (external + central) with return spring A B | Type RSB* : 1 solenoid side B 2 positions (external + central) with return spring A B | | \$10 \(\text{\$\frac{1}{2} \\ \text{\$\frac{1} | RSA1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | RSB1 WALLS RSB2 WALLS RSB3 WALLS RSB4 WALLS RSB4 | | \$20 \(\frac{1}{2} \) \frac | Type TA: 1 solenoid side A 2 external positions with return spring a A B a A B TA D | Type TB : 1 solenoid side B 2 external positions with return spring A B O b b b P T TB TB02 TB12 TB23 | | Type RK : 2 solenoids - 2 positions with mechanical retention A B a A B B A B A B A B A B A B | Type TA*: 1 solenoid side A 2 positions with return spring TA30 TA33 | Type TB *: 1 solenoid side B 2 positions with return spring TB30 TB33 | Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits. # **4 - PRESSURE DROPS** Δ **p-Q** (obtained with viscosity 36 cSt at 50 °C) # **ENERGIZED POSITION** | | FLOW DIRECTION | | | N | |--------------------------|----------------|---------|---------|-----| | SPOOL TYPE | P→A | Р→В | A→T | В→Т | | | Cl | JRVES (| ON GRAF | PH | | S1, SA1, SB1 | 2 | 2 | 3 | 3 | | S2, SA2, SB2 | 1 | 1 | 3 | 3 | | S3, SA3, SB3, RSA3, RSB3 | 3 | 3 | 1 | 1 | | S4, SA4, SB4, RSA4, RSB4 | 5 | 5 | 5 | 5 | | S5 | 2 | 1 | 3 | 3 | | S6 | 2 | 2 | 3 | 1 | | S7, S8 | 4 | 5 | 5 | 5 | | S9 | 2 | 2 | 3 | 3 | | S10 | 1 | 3 | 1 | 3 | | S11 | 2 | 2 | 1 | 3 | | S12, S17, S19 | 2 | 2 | 3 | 3 | | S18 | 1 | 2 | 3 | 3 | | S20, S22 | 1 | 5 | 2 | | | S21, S23 | 5 | 1 | | 2 | | S28 | 6 | 5 | - | 6 | | S29 | 5 | 6 | 6 | - | | TA, TB | 3 | 3 | 3 | 3 | | TA02, TB02 | 2 | 2 | 2 | 2 | | TA23, TB23 | 3 | 3 | | | | RK, RK02, RK1, 1RK | 2 | 2 | 2 | 2 | For pressure drops between A and B lines of spools S10, S20, S21, S22 and S23, which are used in the regenerative diagram, refer to curve 5. # **DE-ENERGIZED POSITION** | | | FLOW DIRECTION | | | | |--------------------------|-----|----------------|---------|-------|-----| | SPOOL TYPE | P→A | Р→В | A→T | В→Т | P→T | | | | CURVI | ES ON C | SRAPH | | | S2, SA2, SB2 | | | | | 2 | | S3, SA3, SB3, RSA3, RSB3 | | | 3 | 3 | | | S4, SA4, SB4, RSA4, RSB4 | | | | | 3 | | S5 | | 4 | | | | | S6 | | | | 3 | | | S7, S8 | | | 6 | 6 | 3 | | S10 | 3 | 3 | | | | | S11 | | | 3 | | | | S18 | 4 | | | | | | S22, S23 | | | 3 | 3 | | | S28, S29 | | | | 6 | | # **5 - SWITCHING TIMES** The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C. | SPOOL TYPE | TIMES [ms] | | |-------------|------------|---------------| | 31 OOL TITE | ENERGIZING | DE-ENERGIZING | | CC | 25 ÷ 75 | 15 ÷ 25 | | CA | 10 ÷ 25 | 15 ÷ 40 | 41 150/217 ED 4/16 #### 6 - OPERATING LIMITS The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13. The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page. The performance of the DC solenoid powered by AC with rectifier connectors are at par. 6.4. The performances of the soft-shift valve are shown at par. 14. #### 6.1 - Valves in standard operation #### DC SOLENOID VALVE | SPOOL | CURVE | | | |--------------|-------|-----|--| | SPOOL | P→A | P→B | | | S1,SA1,SB1 | 1 | 1 | | | S2, SA2, SB2 | 2 | 2 | | | S3, SA3, SB3 | 3 | 3 | | | S4, SA4, SB4 | 4 | 4 | | | S5 | 5 | 5 | | | S6 | 4 | 6 | | | S7 | 4 | 4 | | | S8 | 4 | 4 | | | S9 | 7 | 7 | | | S10 | 7 | 7 | | | S11 | 4 | 6 | | | S12 | 1 | 1 | | | S17 | 4 | 4 | | | S18 | 5 | 5 | | | S19 | 4 | 4 | | | S20 | 6* | 6 | | | S21 | 6 | 6* | | | S22 | 6 | 6 | | | S23 | 6 | 6 | | | S28 | 9* | 9* | | | S29 | 9* | 9* | | | TA, TB | 7 | 7 | | | TA02, TB02 | 8 | 8 | | | TA23, TB23 | 2 | 2 | | | RK | 7 | 7 | | | RK02 | 8 | 8 | | | RK1, 1RK | 7 | 7 | | ## AC SOLENOID VALVE | SPOOL | CURVE | | | |--------------|-------|----------|--| | | P→A | Р→В | | | S1,SA1,SB1 | 1 | 1 | | | S2, SA2, SB2 | 2 | 2 | | | S3, SA3, SB3 | 3 | 3 | | | S4, SA4, SB4 | 2 | 2 | | | S5 | 5 | 5 | | | S6 | 6 | 6 | | | S7 | 4 | 4 | | | S8 | 4 | 4 | | | S9 | 7 | 7 | | | S10 | 8 | 8 | | | S11 | 6 | 6 | | | S12 | 2 | 2 | | | S17 | 7 | 7 | | | S18 | 5 | 5 | | | S19 | 7 | 7 | | | S20 | 10* | 10 | | | S21 | 10 | 10* | | | S22 | 10* | 10 | | | S23 | 10 | 11* | | | S28 | > < | \times | | | S29 | > < | > < | | | TA, TB | 1 | 1 | | | TA02, TB02 | 1 | 1 | | | TA23, TB23 | 2 | 2 | | | RK | 8 | 8 | | | RK02 | 9 | 9 | | | RK1, 1RK | 8 | 8 | | | | | | | * Performance obtained for a valve with A and B lines connected the one to the piston-side chamber and the other to the rod-side chamber of a double-acting cylinder with area ratio 2:1. | SPOOL | CURVE | |-------|-------| | RSA1 | 12 | | RSA2 | 13 | | RSA3 | 14 | | RSA4 | 15 | 41 150/217 ED 5/16 DS3 # 6.2 - 4-way valve in 3-way operation Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow. # 6.3 - AC solenoid valve with coil A110 fed with 110V - 60 Hz | SPOOL | CUF | RVE | |--------------|-----|-----| | OI OOL | P→A | Р→В | | S1,SA1, SB1 | 1 | 1 | | S2, SA2, SB2 | 2 | 2 | | S3, SA3, SB3 | 3 | 3 | | S4, SA4, SB4 | 4 | 4 | | S9 | 5 | 5 | | TA, TB | 2 | 2 | | RK | 6 | 6 | # 6.4 - Operating limits for DC solenoid valves fed with AC with rectifier connectors | SPOOL | CUF | RVE | |--------------|-----|-----| | SFOOL | P→A | Р→В | | S1, SA1, SB1 | 2 | 2 | | S2, SA2, SB2 | 3 | 3 | | S3, SA3, SB3 | 4 | 4 | | S4, SA4, SB4 | 2 | 2 | | S9 | 5 | 5 | | TA, TB | 6 | 6 | | RK | 1 | 1 | 41 150/217 ED 6/16 #### 7 - ELECTRICAL FEATURES # 7.1- Solenoids These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated 360°, to suit the available space. # Protection from atmospheric agents IEC 60529 The IP protection degree is guaranteed only with both valve and connectors of an equivalent IP grade, correctly connected and installed | electric connection | electric
connection
protection | whole
valve
protection | |---------------------------------|--------------------------------------|------------------------------| | K1 EN 175301-803 (ex DIN 43650) | IP66 | | | K2 AMP JUNIOR | IP65/67 | IP65 | | K7 DEUTSCH DT04 male | IP66/IP68/IP69
IP69K* | | ^(*) The IP69K protection degree is not taken into account in IEC 60529 but it is included in ISO 20653. | SUPPLY VOLTAGE FLUCTUATION | ± 10% Vnom | |---|-------------------------------| | MAX SWITCH ON FREQUENCY | 18.000 ins/hr | | DUTY CYCLE | 100% | | ELECTROMAGNETIC
COMPATIBILITY (EMC) (NOTE) | In compliance with 2014/30/EU | | LOW VOLTAGE | In compliance with 2014/35/EU | | CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation: DC valve | class H
class F
class H | **NOTE**: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000). # 7.2 - Current and absorbed power for DC solenoid valve The table shows current and power consumption values of the DC coils. Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits (see diagram at section 6.4). # Coils for direct current (values ±10%) | | Nominal
voltage
[V] | Resistance
at 20°C
[Ω] | Current consumpt. | Power consumpt [W] | K1 | Coil code
K2 | K7 | |------|---------------------------|------------------------------|-------------------|--------------------|---------|-----------------|---------| | D12 | 12 | 4,4 | 2,72 | 32,7 | 1903080 | 1903100 | 1902940 | | D14 | 14 | 7,2 | 1.93 | 27 | 1903086 | | | | D24 | 24 | 18,6 | 1,29 | 31 | 1903081 | 1903101 | 1902941 | | D28 | 28 | 26 | 1,11 | 31 | 1903082 | | | | D48 | 48 | 78,6 | 0,61 | 29,5 | 1903083 | | | | D110 | 110 | 423 | 0,26 | 28,2 | 1903464 | | | | D125 | 125 | 550 | 0,23 | 28,6 | 1903467 | | | | D220 | 220 | 1692 | 0,13 | 28,2 | 1903465 | | | # 7.3 - Current and absorbed power for AC solenoid valve The table shows current and power consumption values at inrush and at holding, for AC coils. # Coils for alternating current (values ± 5%) | Suffix | Nominal
Voltage
[V] | Freq.
[Hz] | Resistance
at 20°C
[Ω] (±1%) | Current
consumption
at inrush
[A] (±5%) | Current
consumption
at holding
[A] (±5%) | Power consumption at inrush (±5%) [VA] | Power consumption at holding (±5%) [VA] | Coil
Code
K1 | |--------|---------------------------|---------------|------------------------------------|--|---|--|---|--------------------| | A24 | 24 | 50 | 1,46 | 8 | 2 | 192 | 48 | 1902830 | | A48 | 48 | 30 | 5,84 | 4,4 | 1,1 | 204 | 51 | 1902831 | | A100 | 100V-50Hz | | 23,3 | 2,27 | 0,49 | 227 | 49 | 1902836 | | A100 | 100V-60Hz | | 25,5 | 2,01 | 0,38 | 201 | 38 | | | A110 | 110V-50Hz | 50/60 | 32 | 1,84 | 0,46 | 192 | 48 | 1902832 | | AIIU | 120V-60Hz | 30/60 | 32 | 1,56 | 0,39 | 188 | 47 | 1902032 | | A 220 | 230V-50Hz
240V-60Hz | 0V-50Hz | 140 | 0,76 | 0,19 | 176 | 44 | 1902833 | | AZJU | | | 140 | 0,6 | 0,15 | 144 | 36 | 1902033 | | F110 | 110 | 60 | 26 | 1,6 | 0,4 | 176 | 44 | 1902834 | | F220 | 220 | 1 00 | 106 | 0,8 | 0,2 | 180 | 45 | 1902835 | 41 150/217 ED **7/16** # 8 - OVERALL AND MOUNTING DIMENSIONS FOR DC SOLENOID VALVES 41 150/217 ED **8/16** # 9 - OVERALL AND MOUNTING DIMENSIONS FOR AC SOLENOID VALVES 41 150/217 ED 9/16 #### 10 - INSTALLATION Configurations with centering and return springs can be mounted in any position; type RK valves without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur. # 11 - ELECTRIC CONNECTIONS connection for EN 175301-803 (ex DIN 43650) connector code K1 (standard) code WK1 (W7 version only) connection for AMP JUNIOR connector code K2 connection for DEUTSCH DT06-2S male connector code K7 connection for DEUTSCH DT06-2S male connector code WK7 (W7 version only) code **WK7D** (W7 version only - coil with diode) # 12 - ELECTRIC CONNECTORS The valves are delivered without connectors. Connectors type EN 175301-803 (ex DIN 43650) for K1 connections can be ordered separately. See catalogue 49 000. 41 150/217 ED 10/16 #### 13 - MANUAL OVERRIDES # 13.1 - Manual override, boot protected # 13.2 - CH-DS3/11 Lever manual override (only for DC solenoid valve) # 13.3 - CP-DS3/10 Push manual override (only for DC solenoid valve) # 13.5 - CPK-DS3/10 Push manual override with mechanical retention (only for DC solenoid valve) # 13.4 - CK-DS3/10 Knob manual override (only for DC solenoid valve) When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing. Spanner: 3 mm Code: 3401150009 41 150/217 ED 11/16 # 14 - SOFT-SHIFT VERSION FOR DC VALVE #### 14.1 - Identification code This version enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool. In this version, the S9 spool must be used instead of the S3 type. The diagram on the side shows the operating limits of the spools available in the soft-shifting version, while the table shows the switching times. The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C. The shifting time and characteristics curves are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve. For correct operation of the soft-shifting ensure the solenoid tubes are always filled with oil. At this matter, we recommend to install a backpressure valve set at 1 \div 2 bar on T line. | SPOOL | CURVE | TIMES [ms] | | | | |------------|-------|------------|---------------|--|--| | | | ENERGIZING | DE-ENERGIZING | | | | S1, S12 | 1 | 350 | 200 ÷ 300 | | | | S2F | 2 | 400 | 100 ÷ 250 | | | | S4F | 4 | 350 | 150 ÷ 300 | | | | S9 | 1 | 400 | 200 ÷ 300 | | | | TA12, TB12 | 3 | 180 | 200 ÷ 300 | | | | TA23, TB23 | | 300 | 200 ÷ 300 | | | 41 150/217 ED 12/16 #### 15 - VERSION WITH UL CERTIFIED COILS #### 15.1 - Identification code # 15.2 - UL file number The UL database website provides informations about the certification, by entering the code MH29222 in the 'UL file number' field. #### 15.3 - Electrical features (values ± 10%) | | Nominal
voltage
[V] | Resistance
at 20°C
[Ω] | Current consumpt. [A] | Power consumpt [W] | Coil code | |---------|---------------------------|------------------------------|-----------------------|--------------------|-----------| | D24ULK1 | 24 | 19.2 | 1.25 | 30 | 1903341 | NOTE: Valves with UL coils must be ordered complete. The UL coils are not interchangeable with those of standard valves. #### 15.4 - Overall and mounting dimensions # 15.5 - Spare parts UL certified coil: C22S3-D24ULK1/11 Solenoid tube : NBR TD22-DS3-UL/11N viton TD22-DS3-UL/11V Solenoid tube plunger: cod. 0119545 Locking ring: cod. 0119546 Seals: kit for standard DC valves 41 150/217 ED 13/16 #### 16 - HIGH CORROSION RESISTANCE VERSION #### 16.1 - identification code # 16.2 - Corrosion resistance This version features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600** hours (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289). #### 16.3 - DC coils The coils feature a zinc-nickel surface treatment. The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil. # (values ±10%) | | Nominal voltage | Resistance
at 20°C | Current consumpt. | Power consumpt | | Coil code | | |-----|-----------------|-----------------------|-------------------|----------------|---------|-----------|---------| | | [V] | [Ω] | [A] | [W] | WK1 | WK7 | WK7D | | D12 | 12 | 4,4 | 2,72 | 32,7 | 1903050 | 1903580 | 1903600 | | D24 | 24 | 18,6 | 1,29 | 31 | 1903051 | 1903581 | 1903601 | # 16.4 - Protection from atmospheric agents IEC 60529 The IP protection degree is guaranteed only with both valve and connectors of an equivalent IP grade, correctly connected and installed. | electric connection | electric connection protection | whole valve protection | | |----------------------------------|--------------------------------|--------------------------|--| | WK1 EN 175301-803 (ex DIN 43650) | IP66 | IP65 | | | WK7 DEUTSCH DT04 male | IP66/IP68/IP69
IP69K* | IP66/IP68/IP69
IP69K* | | | WK7D DEUTSCH DT04 male | IP66/IP68/IP69
IP69K* | IP66/IP68/IP69
IP69K* | | ^(*) The IP69K protection degree is not taken into account in IEC 60529 but it is included in ISO 20653. 41 150/217 ED 14/16 #### 17- PORT RESTRICTORS Port restrictors are recommended if flow variations occur which exceed the valve performance limit during the switching processes, or for circuit dampening. The port restrictor plugs can be ordered separately with the part numbers shown at left. | Ø (mm) | part number | |--------|-------------| | blank | 0144162 | | 0.6 | 0144163 | | 0.8 | 0144033 | | 1 | 0144034 | | Ø (mm) | part number | |--------|-------------| | 1.2 | 0144035 | | 1.5 | 0144036 | | 1.8 | 0144164 | | 2 | 0144165 | # 18 - SPARE PARTS FOR DC SOLENOID VALVE 41 150/217 ED 15/16 # 19 - SPARE PARTS FOR AC SOLENOID VALVE # 20 - SUBPLATES (see catalogue 51 000) Type PMMD-AI3G with rear ports 3/8" BSP Type PMMD-AL3G with side ports 3/8" BSP # DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 $www.duplomatic.com \bullet e\text{-mail: } sales.exp@duplomatic.com$